Effects of Transition Metal Addition on the Solid-State Transformation of Molybdenum Trioxide to Molybdenum **Carbides**

Kyung Tack Jung, Won Bae Kim, Chang Houn Rhee, and Jae Sung Lee*

Department of Chemical Engineering and School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong, Pohang 790-784, Korea

Received May 15, 2003. Revised Manuscript Received November 5, 2003

Direct conversion of MoO₃ to molybdenum carbides by temperature-programmed reaction (TPR) with a reacting gas mixture of $CH_4/4H_2$ has been studied in the presence of a transition metal selected from Pt, Pd, Ni, Co, Cu, and pre-synthesized Mo₂C loaded on MoO₃. Loading of the metals reduced the temperatures of MoO₃ reduction and increased the specific surface area of produced carbides. However, the obtained phase of molybdenum carbides differed depending on the employed transition metal; Pt, Pd, or Ni produced cubic α -MoC_{1-x}, while Co, Cu, or pre-synthesized Mo₂C formed hexagonal β -Mo₂C, which was the same phase as that produced from the direct transformation of MoO₃ itself without any metal loading. The nature of transition metals loaded on MoO₃ also led to different TPR patterns for the transformation to molybdenum carbide, suggesting that different reaction routes were involved. Thus, MoO₃ loaded with Co, Cu, or Mo₂C showed TPR patterns similar to that of MoO₃ itself, except for slightly lower temperatures for the initiation of the reduction. With these metals, the transformation of MoO₃ to carbides followed a nontopotactic route involving the MoO₂ intermediate phase. By contrast, loading of Pt, Pd, or Ni to MoO₃ drove MoO₃ reduction into a topotactic transformation through a MoO_xC_y intermediate phase. However, unlike the well-established topotactic $MoO_3 \rightarrow Mo_2N \rightarrow \alpha - MoC_{1-x}$ transformation, the pseudomorphism was only partly maintained in this metal-promoted, direct MoO₃ → α -MoC_{1-x} transformation.

Introduction

The formation of metal carbides is extensive throughout the Periodic Table. All transition metals produce their corresponding carbides, revealing exceptions of the second and third rows of Group 9-10 metals (Rh, Ir, Pd, and Pt). In general, carbides of Group 4-6 metals are thermodynamically more stable and possess greatly improved catalytic properties over those of parent metals in activity, selectivity, and resistance to poisoning. Carbon atoms of these metal carbides reside in interstitial cavities between larger metal atoms.1

The carbides of Group 4-6 metals have been found to be good catalysts for a wide variety of reactions typically catalyzed by noble metals of high cost and limited supply. In particular, molybdenum carbides and nitrides have attracted attention as active and selective catalysts for reactions such as hydrogenation of CO or olefins,²⁻⁶ NH₃ synthesis,⁷ hydrocarbon reforming,^{8,9} hydrogenolysis of hydrocarbons, 10,11 and hydrotreating. 12-16 Applicability of molybdenum carbides to practical catalysts requires high specific surface areas together with their effective structures. To prepare molybdenum carbides with high surface areas, the temperature-programmed reaction (TPR) method has been established; it induces the solid-state transformation of MoO₃ in a controlled manner by reacting MoO₃ with a nitrogen-containing reactive gas such as ammonia or a carbon-containing gas mixture such as CH₄/ H₂.^{17–21} The direct carburization of MoO₃ with CH₄/H₂

⁽⁶⁾ Lee, J. S.; Yeom, M. H.; Park, K. Y.; Nam, I.; Chung, J. S.; Kim, Y. G.; Moon, S. H. J. Catal. 1991, 128, 126. (7) Volpe, L.; Boudart, M. J. Phys. Chem. 1986, 90, 4874.

⁽⁸⁾ Levy, R. B.; Boudart, M. Science 1973, 181, 547.

⁽⁹⁾ Bridgewater, A. J.; Burch, R.; Michell, P. C. H. J. Chem. Soc., Faraday Trans. 1 1980, 76, 1811.

⁽¹⁰⁾ Lee, J. S.; Locatelli, S.; Oyama, S. T.; Boudart, M. J. Catal. 1990, 125, 157.

⁽¹¹⁾ Iglesia, E.; Ribeiro, F. H.; Boudart, M.; Baumgartner, J. E. Catal. Today 1992, 15, 307.

⁽¹²⁾ Lee, J. S.; Boudart, M. Appl. Catal. 1985, 19, 207.

⁽¹³⁾ Abe, H.; Bell, A. T. Catal. Lett. **1993**, 18, 1.

⁽¹⁴⁾ Lee, K. S.; Abe, H.; Reimer, J. A.; Bell, A. T. J. Catal. 1993, 139, 34.

⁽¹⁵⁾ Ramanathan, S.; Oyama, S. T. J. Phys. Chem. 1995, 99, 16365. (16) Choi, J. G.; Brenner, J. R.; Thompson, L. T. *J. Catal.* **1995**, 154, 30.

⁽¹⁷⁾ Li, S. Kim, W. B.; Lee, J. S. *Chem. Mater.* **1998**, *10*, 1853. (18) Volpe, L.; Boudart, M. *J. Solid State Chem.* **1985**, *59*, 332.

⁽¹⁹⁾ Volpe, L.; Boudart, M. *J. Solid State Chem.* **1985**, *59*, 348.
(20) Lee, J. S.; Oyama, S. T.; Boudart, M. *J. Catal.* **1987**, *106*, 125.
(21) Lee, J. S.; Volpe, L.; Ribeiro, F. H.; Boudart, M. *J. Catal.* **1988**,

^{*} Corresponding author. Tel: 82-562-279-2266. Fax: 82-562-279-5528. E-mail: jlee@postech.ac.kr.

⁽¹⁾ Lee, J. S.; Hyeon, T. Metal Carbides. In *Encyclopedia of Catalysis*; Horvath, I. T., Ed.; John Wiley & Sons: New York, 2003.
(2) Logan, M.; Gellman, A.; Somorjai, G. A. *J. Catal.* **1985**, *94*, 60.
(3) Leary, K. J.; Michaels, J. N.; Stacy, A. M. *J. Catal.* **1986**, *101*,

⁽⁴⁾ Ranhotra, G. S.; Haddix, G. W.; Bell, A. T.; Reimer, J. A. J. Catal. 1987, 108, 24.
(5) Lee, J. S.; Yeom, M. H.; Lee, D. S. J. Mol. Catal. 1990, 62, 145.

produces a molybdenum carbide of the hcp structure β -Mo₂C, which is the thermodynamically stable phase under the preparation conditions. The nitride (fcc γ -Mo₂N) produced from the TPR of MoO₃ with NH₃ is transformed to the carbide by TPR with CH₄/H₂.²¹ However, the carbide obtained via the nitride shows the metastable fcc α -MoC_{1-x} phase. This MoO₃ \rightarrow Mo₂N \rightarrow α -MoC_{1-x} transformation has been established to be topotactic since the crystallographic motif is conserved in these three molybdenum phases by minimal movement of molybdenum atoms throughout the whole solid transformation. The platelet morphology of MoO₃ is also conserved in Mo₂N and α -MoC_{1-x} (pseudomorphism). The direct carburization by ethane/H₂ as a reacting gas mixture lowers the required synthesis temperature and increases the surface area of the final carbides compared to those prepared with CH_4/H_2 . Yet product powders showed the hcp β -Mo₂C phase. The sonochemical decomposition of molybdenum hexacarbonyl produced fcc α -MoC_{1-x}, with a high surface area of 180 m² g⁻¹.²³⁻²⁵ Impregnation with a small amount of Pt (0.25 wt %) to MoO_3 produced high surface area α - MoC_{1-x} by direct TPR/carburization, which was pseudomorphous with MoO₃.²¹ Thus, the nature of the solid transformation from MoO₃ to molybdenum carbides is dictated by the preparation conditions and products with different structures, surface areas, and morphologies are formed. 17,21,26

This work investigates the effect of various transition metals on the solid-state transformation of MoO_3 to molybdenum carbides under a CH_4/H_2 gas stream. A small amount of Group $9\!-\!11$ metals (0.2–0.3 wt %) was loaded on the bulk MoO_3 before the gas—solid reactions. The morphology, crystal structure, and physicochemical surface properties of obtained molybdenum carbides are examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), N_2 adsorption and CO chemisorption, and TPR profiles.

Experimental Section

Preparation of Molybdenum Carbides. *Impregnation of Transition Metals on MoO_3.* Bulk MoO_3 (Alfa, 99.95%) was impregnated with an aqueous solution of a transition metal precursor by an incipient wetness method, followed by drying the slurry to remove water in an oven at 383 K for 20 h. A description of the metal precursors employed here is listed in Table 1 together with the amount of the precursors in weight percent of metal to MoO_3 . A physical mixture of MoO_3 and a pre-synthesized Mo_2C was also prepared to examine a possible role of Mo_2C in MoO_3 transformation.

Temperature-Programmed Reaction (TPR). A temperature-programmed reaction of the metal-loaded molybdenum trioxide was employed to prepare molybdenum carbide powders with high surface areas and the solid-state transformation processes were investigated by observation of gas evolution. Detailed conditions of TPR have been described in previous works. $^{17-21}$ To prepare fcc $\alpha\text{-MoC}_{1-x}$ as a reference, we employed two consecutive steps of nitridation of MoO3 with NH3 to Mo2N, followed by carburization of the nitride to $\alpha\text{-MoC}_{1-x}$ under a CH4/H2 gas stream.

Table 1. Transition Metals Employed for the Solid-State Transformation of MoO_3 under a CH_4/H_2 Gas Stream

metal	amount of loading (wt %, based on Mo)	precursor employed
Co	0.2	Co(NO ₃) ₂ ·6H ₂ O (Janssen, 99%)
Cu	0.2	Cu(NO ₃) ₂ ·xH ₂ O (Aldrich, 99.999%)
Mo_2C^a	1.0	hcp phase β -Mo ₂ C
Ni	0.2	Ni(NO ₃) ₂ ·6H ₂ O (Aldrich, 99.999%)
Pd	0.2	Pd(NO ₃) ₂ ·2H ₂ O (Sigma)
Pt	0.3	H ₂ PtCl ₂ ·6H ₂ O (Aldrich, 99.995%)

^a Physical mixture of bulk MoO₃ and 1 wt % hcp phase β -Mo₂C, which had been prepared from MoO₃, as described in the Experimental Section.

For the TPR of the metal-loaded MoO₃, 80 mg of the sample powder was used in a U-shaped quartz reaction cell with an outer diameter of 13 mm. This cell was equipped with two stopcocks at the inlet and outlet parts of gas flow, which enabled the produced molybdenum carbides to be characterized in situ without exposure to the atmosphere after the TPR. The employed gases were CH₄ (Union Carbide, 99.95%) and H₂ (KBOC, 99.99%) for reduction and carburization. These gases were further purified by passing through a 5-Å molecular sieve trap and an oxygen trap (Alltech). NH3 (Matheson, 99.99%) was used to prepare the intermediate phase of molybdenum nitride. A stream of gas mixture was passed through the reaction cell at a total flow rate of 37 μ mol s⁻¹ with a mixing ratio of 1/4 for CH_4 to H_2 . The temperature was varied in a furnace coupled with a PID controller and monitored locally with a thermocouple. The temperature increased at a ramping rate of 5 K min⁻¹ from 373 to 1173 K. Identification and analysis of gaseous reaction products were performed by an online mass spectrometer (HP 5972).

Characterization Methods. Structure and Morphology. Since fresh molybdenum carbide powders burn spontaneously upon exposure to air, samples were passivated prior to the characterization by letting 0.5% O_2 in He pass through the produced powder for 2 h, followed by letting the air diffuse slowly into the reaction cell through one end of the reactor open to atmosphere for 20 h. This passivation procedure allowed the final samples subject to a mild surface oxidation without the structural and morphological change of bulk molybdenum carbides.

To examine the structural change after and during the TPR, powder X-ray diffraction (XRD) measurements were conducted using a Mac Science M18XHF diffractometer with Cu K α radiation ($\lambda=1.5405$ Å). The morphology of the passivated samples was observed by scanning electron microscopy (SEM) on a Hitachi S-2460N.

Measurements of Surface Area and Mo Dispersion. The CO chemisorption and N2 adsorption were conducted on a conventional volumetric adsorption apparatus without exposure of the sample to atmosphere after the TPR by use of the stopcocks attached on the reaction cell. Before measurement of CO uptake, the reaction cell containing the powder sample was evacuated to a pressure less than 10^{-4} Pa for 0.5 h and the reaction cell was cooled to room temperature. Then the first CO adsorption isotherm was taken as CO pressure increased. At room temperature, the cell was again evacuated to a pressure less than 10^{-4} Pa for 0.5 h to remove physisorbed CO. The second isotherm was taken in a similar way, and the amount of irreversible CO uptake was obtained from the difference between the two isotherms extrapolated to zero pressure. The specific surface areas (S_g) of the samples were determined by the BET method from N2 adsorption at 77 K on the same adsorption apparatus.

Results

TPR Profiles of Transition Metal-Loaded MoO₃.

Solid-state transformation of molybdenum trioxide into molybdenum carbides by reaction with a reactive gas mixture of $CH_4/4H_2$ involves generally two consecutive

⁽²²⁾ Claridge, J. B.; York, A. P. E.; Brungs, A. J.; Green, M. L. H. Chem. Mater. **2000**, *12*, 132.

⁽²³⁾ Suslick, K. S.; Choe, S. B.; Cichowlas, A. A.; Grinstaft, M. W. *Nature* **1991**, *353*, 414.

⁽²⁴⁾ Suslick, K. S.; Hyeon, T.; Fang, M. Chem. Mater. 1996, 8, 2172.
(25) Li, S.; Lee, J. S.; Hyeon, T.; Suslick, K. S. Appl. Catal. A 1999, 184, 1.

⁽²⁶⁾ Volpe, L.; Boudart, M. Catal. Rev.-Sci. Eng. 1985, 27, 515.

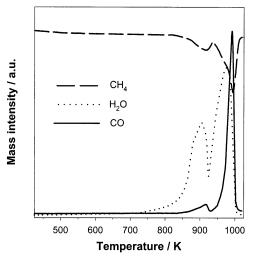


Figure 1. Temperature-programmed reaction profiles of the transformation of MoO₃ in a CH₄/4H₂ stream (ramping rate = 300 K h⁻¹, MoO₃ loading = 80 mg, flow rate = 37 μ mol s⁻¹).

processes; the reduction of MoO₃ to MoO₂ by H₂ at a relatively low temperature without involving CH₄, followed by the simultaneous further reduction and car-

burization of the intermediate MoO2 to molybdenum carbides by reaction with both methane and dihydrogen.¹⁷ Figure 1 represents a typical temperatureprogrammed reaction (TPR) profile of the transformation of molybdenum trioxide to its carbide under the CH₄/4H₂ stream. There are two H₂O formation peaks at ca. 900 K and ca. 970 K and peaks due to the consumption of CH₄ and production of CO above 850 K. We also observed CO₂ formation at a temperature similar to that of CO formation, but this profile was excluded because its amount was negligible. In the second reduction step, CH₄ seemed to serve as both reduction and carburization agents. Carbon and hydrogen atoms in CH₄ should contribute to the reduction of MoO₂ produced from the first reduction step as carbon converts to CO and CO2 and hydrogen to H2O. At the same time carbon atoms are incorporated into molybdenum lattice. This TPR pattern of MoO₃ itself by a CH₄/4H₂ stream was in line with the previous work.¹⁷

We investigated the effects of the transition metal loading (less than 0.3 wt % of Mo) on the direct solidstate transformation of MoO₃ into the carbides. Figure 2 illustrates the TPR profiles for the transformation of

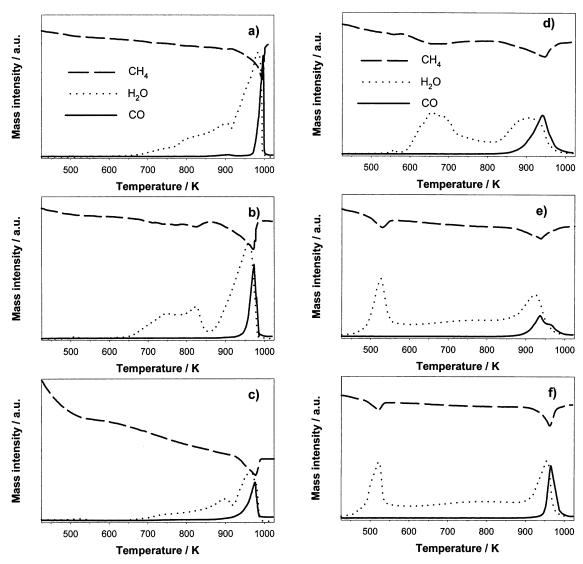
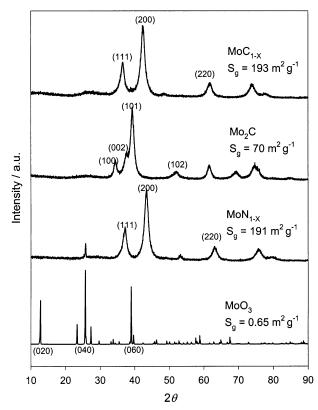
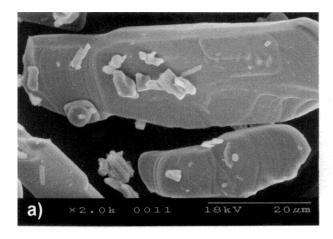



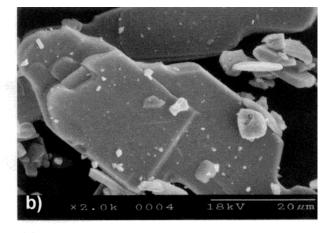
Figure 2. Temperature-programmed reaction profiles of the transformation of (a) Co-, (b) Cu-, and (c) Mo₂C-loaded MoO₃ with a $\ddot{\text{CH}}_4/4\text{H}_2$ stream (ramping rate = 300 K h⁻¹, $\dot{\text{MoO}}_3$ loading = 80 mg, flow rate = 37 μ mol s⁻¹). (d) Ni-, (e) Pd-, and (f) Pt-loaded MoO₃ with a CH₄/4H₂ stream (ramping rate = 300 K h⁻¹, MoO₃ loading = 80 mg, flow rate = 37 μ mol s⁻¹).

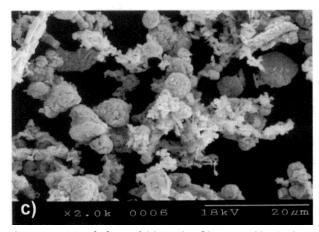
 MoO_3 loaded with Co, Cu, a pre-synthesized Mo_2C , Ni, Pd, or Pt. The initial temperature of H_2O formation appeared at lower temperatures by 100-250 K in all cases than that of the TPR profile of MoO_3 itself shown in Figure 1. In addition to the decrease in the starting temperature of the first reduction stage, the final transformation temperature at 950-1000 K was also lowered by at least 50 K in the TPR profiles for Cu, Ni, Pd, and Pt-loaded MoO_3 . Furthermore, it should be noted that the metals of the Group 10 (Ni, Pd and Pt) showed profiles similar to each other in the H_2O formation pattern, with the first reduction occurring below 650 K. These patterns are distinguished from those for Co, Cu, and Mo_2C that showed the first reduction temperatures above 700 K.

The consumption peaks of CH4 gave a more interesting feature. In TPR of Pd- and Pt-loaded MoO3 shown in Figure 2, parts (e) and (f), there were two sharp CH₄ consumption peaks that accompanied two H2O formation peaks. The Ni-loaded MoO3 (Figure 2d) did not show such sharp peaks, especially for the low-temperature CH₄ consumption, but the pattern seemed to be qualitatively the same as those for Pd and Pt. However, there was no indication for the production of carboncontaining gas molecules such as CO and CO₂ at these low temperatures in all cases, suggesting that carbons produced from methane would reside in MoO3 without forming any gas molecules. By contrast, Figure 2, parts (a)-(c), showed no indication of such carbon incorporation at low temperatures in MoO₃ loaded with Co, Cu, and Mo₂C.

Structure and Morphology of Molybdenum Carbides and Their Intermediates. The powder XRD patterns of reactant and product solids are presented in Figure 3. The Mo₂C (hcp) was produced from onestep TPR of MoO₃, and MoC_{1-x} (fcc) from two-step TPR, that is, the first TPR of MoO₃ with NH₃ to form the nitride intermediate fcc Mo₂N, followed by TPR of Mo₂N with CH₄/4H₂. The X-ray diffraction (XRD) pattern of MoO₃ reveals the greatly enhanced peak intensities of $\{0k0\}$ planes such as (020), (040), and (060), indicating an anisotropic platelet structure. The scanning electron microscopy (SEM) image in Figure 4a confirms this morphology of the platelet structure. However, the strong {101} peaks of Mo₂C imply that the morphology has been changed by breaking the $\{0k0\}$ planes, as confirmed again by its SEM microgram in Figure 4c that showed mostly agglomerated isotropic particles that were completely different from the morphology of its parent MoO₃. In cases of Mo₂N and MoC_{1-x}, however, the XRD patterns represent intense peaks for {200} planes that are parallel to the $\{0k0\}$ planes of MoO₃, suggesting that the topotactic phase transformation was involved from MoO_3 to Mo_2N and from Mo_2N to MoC_{1-x} . The intensity distribution of XRD peaks and the pseudomorphism are consequences of the topotactic or nontopotactic phase transformations of $MoO_3 \rightarrow Mo_2N \rightarrow$ MoC_{1-x} and $MoO_3 \rightarrow Mo_2C$, respectively. The structures of molybdenum carbides produced from the metalloaded MoO₃ were examined by XRD. Figure 5 shows two different structures of the carbides obtained: fcc MoC_{1−x} from Ni, Pd- and Pt-loaded MoO₃, and hcp Mo₂C from Co-, Cu-, and Mo₂C-loaded MoO₃. The relative intensity of (200) to (111) peaks for this MoC_{1-x} was




Figure 3. XRD patterns showing the structural evolution for topotactic and nontopotactic transformations of MoO_3 to molybdenum nitride and carbides.


lower than that for MoC_{1-x} produced via molybdenum nitride shown in Figure 3, but closer to a theoretical intensity ratio for isotropic fcc crystals. This different intensity distribution of XRD peaks for two types of MoC_{1-x} could be understood when observing SEM images of Figure 6 that show morphologies of all carbides produced from metal-loaded MoO_3 .

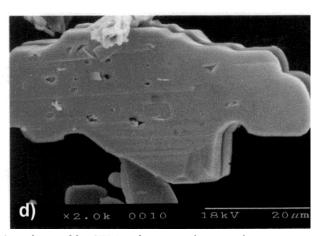

For the hcp Mo₂C produced from Co, Cu, and Mo₂Cloaded MoO₃ shown in Figure 6a-c, most of the large platelet particles were broken into smaller ones and numerous agglomerates of small particles could be observed. These morphologies, however, are different from that of Mo₂C prepared without transition metal loading in that there are many nonisotropic platelet particles, although they are smaller in size than original MoO_3 particles. The morphology of MoC_{1-x} obtained from Ni-, Pd-, and Pt-loaded MoO3 in Figure 6d-f showed no agglomerates of particles but instead showed mostly broken platelets. The shape of the original large platelets of MoO₃ still remained for Ni- and Pd-loaded MoC_{1-x} . However, it appeared that the anisotropy manifested by these broken MoC_{1-x} platelets was not extensive enough to cause the unusual intensity distribution of XRD peaks as observed for MoC_{1-x} prepared via Mo₂N.

Figure 7 represents the structural evolution of molybdenum species involved in the reduction/carburization process of metal-loaded MoO₃. These XRD patterns were obtained for the samples after TPR had been stopped and quenched at the indicated temperatures. The temperatures to quench the TPR were chosen to be the points where the first-stage reduction was finished by referring to the TPR patterns of Figure 2. The Co- and Cu-loaded samples showed XRD patterns

Figure 4. Morphology of (a) MoO₃, (b) Mo₂N, (c) Mo₂C, and (d) MoC_{1-x} observed by SEM with a magnification of 2000.

exclusively of MoO₂. The Mo₂C-loaded MoO₃ also showed MoO₂ as a dominant species together with Mo₄O₁₁, which was less reduced than MoO2. In contrast, a molybdenum oxycarbide, MoO_xC_y, appeared during the carburization of Ni-, Pd-, and Pt-loaded MoO₃. Although a rather small contribution of the oxycarbide intermediate was observed for Ni, its formation was dominant for the Pd- and Pt-loaded cases.

Surface Properties of Molybdenum Carbides. Table 2 shows the results of N2 adsorption and CO chemisorption on the molybdenum carbides produced in the present work. Adsorption was conducted in situ without exposure of the sample to air. In all cases of the metal loading, substantial increases of the specific surface area (S_g) were observed for the produced molybdenum carbides no matter what their final structure was, compared to that of Mo₂C produced from bare MoO_3 (70 m² g⁻¹). The Cu-loaded molybdenum carbide showed the highest surface area of 221 m² g⁻¹. These S_g values were consistent with the X-ray line broadening in that XRD peaks became broader for metal-loaded Mo₂C (Figure 5) relative to those of bare Mo₂C (Figure 3). As the surface area increased, the greater amount of irreversible uptake of CO was observed. In general, the samples with lower starting temperatures of the reduction in their TPR profiles possessed higher surface areas as well as greater amounts of CO chemisorption.

Table 2 also lists properties of MoC_{1-x} produced by two-step topotactic routes, that is, nitridation of MoO₃ to Mo_2N , followed by carburiztion of Mo_2N to MoC_{1-x} . The latter showed a high surface area of ca. 190 m² g⁻¹

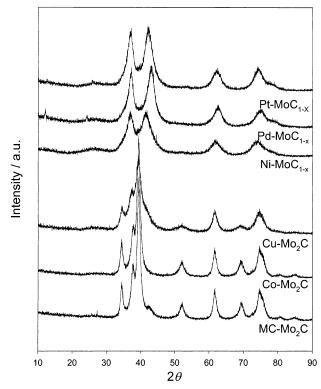


Figure 5. XRD patterns of metal-loaded molybdenum carbides. Note that fcc MoC_{1-x} phase is dominant for Ni-, Pd-, and Pt-loaded samples and hcp Mo_2C phase is dominant for Mo₂C-, Co-, and Cu-loaded molybdenum carbides.

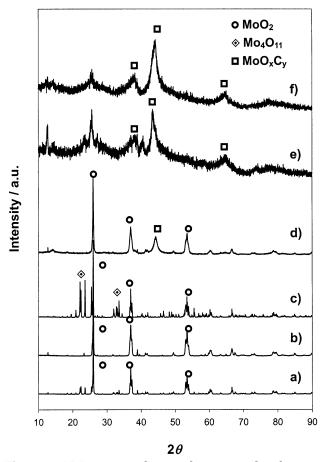

or larger. Except for Mo₂C-loaded Mo₂C, the other

Figure 6. Morphology of (a) Co-, (b) Cu-, and (c) Mo₂C-loaded molybdenum carbides observed by SEM with a magnification of 2000. (d) Ni-, (e) Pd-, and (f) Pt-loaded molybdenum carbides observed by SEM with a magnification of 2000.

metal-loaded molybdenum carbides had a comparable or slightly higher S_g than that of MoC_{1-x} . More interestingly, metal-loaded MoC_{1-x} samples showed amounts of CO chemisorption greater by 80–120 μ mol g⁻¹ for Ni-, Pd-, and Pt-MoC $_{1-x}$, compared to that of bare MoC_{1-x} (540 μ mol g⁻¹). This is reflected in the great increase of areal number density for these materials by up to 25%. A possible chemisorption of CO on the added metal itself could be ignored unambiguously by following a simple calculation. Even if all the added metals were exposed by 100% dispersion on the surface of MoC_{1-x} , their amount would be 34, 19, and 15 μ mol, respectively, for Ni, Pd, and Pt. Thus, the maximum contribution of CO chemisorbed on these metals is less than 5% of the total amount of CO actually chemisorbed on Ni-, Pd-, and Pt-loaded MoC_{1-x}. The increased CO site densities for metal-loaded molybdenum carbides appears to originate from the surface-cleaning effect of loaded transition metals. A part of the molybdenum carbide surface is covered with unreactive "graphitic" carbon that comes from the preparation step and blocks CO adsorption sites.²⁰ Transition metals could hydrogenate this surface carbon off the molybdenum carbide surface.

Discussion

The molybdenum carbide with the fcc structure α -MoC_{1-x} has been known to possess higher specific surface areas (\sim 200 m² g⁻¹) than those with the hcp structure Mo₂C (\sim 70 m² g⁻¹). This fcc phase is usually prepared through a topotactic route of $MoO_3 \rightarrow Mo_2N$ $\rightarrow \alpha$ -MoC_{1-x} transformation. In this study, we have demonstrated that the α -MoC_{1-x} phase of similar properties could be synthesized by one-step reduction/ carburization of MoO₃ in the presence of a transition metal (Ni, Pd, or Pt) loaded on MoO₃ prior to TPR with CH₄/H₂. When Cu, Co, or pre-synthesized Mo₂C is loaded instead on MoO₃, the hcp Mo₂C phase is obtained as in the absence of any transition metal. However, this metal-loaded Mo₂C possesses the high surface areas comparable with those for α -MoC_{1-x}. The S_g values for Cu- and Co-loaded Mo₂C are close to 200 m² g⁻¹. To the best of our knowledge, these are, by far, the highest surface areas reported for bulk Mo₂C. Thus, employment of transition metals in the preparation of molybdenum carbides exerts one of two effects depending on the nature of the metal: to provide a direct synthesis route to metastable α -MoC_{1-x} phase or to the usual

Figure 7. XRD patterns showing the structural evolution of intermediate species during the carburization of the metalloaded MoO₃ by CH₄/4H₂. These molybdenum intermediates were observed after the TPR was stopped and the sample was quenched at 913 K for (a) Co-, (b) Cu-, and (c) Mo2C-loaded MoO_3 and at 793 K for (d) Ni-, (e) Pd-, and (f) Pt-loaded MoO_3 .

Table 2. Physicochemical Properties of the Bare and the Metal-Loaded Molybdenum Carbides

sample	S_{g}^{a} (m ² g ⁻¹)	amount of CO chemisorbed b (μ mol g $^{-1}$)	$\begin{array}{c} \text{number density}^c \\ \text{(1018 m$^{-2}$)} \end{array}$	XRD phase ^d
Mo ₂ C	70	164	1.41	hcp
Co-Mo ₂ C	182	565	1.87	hcp
Cu-Mo ₂ C	221	602	1.64	hcp
$MC-Mo_2C$	122	209	1.03	hcp
MoC_{1-x}	193	540	1.68	fcc
$Ni-MoC_{1-x}$	209	662	1.91	fcc
$Pd-MoC_{1-x}$	180	620	2.07	fcc
$Pt-MoC_{1-x}$	178	620	2.10	fcc

^a Specific surface area determined by N₂-BET method. ^b Amount of CO adsorbed irreversibly on the surface of molybdenum carbides. c Areal number density of molybdenum metal sites titrated by CO chemisorption under an assumption of one-to-one adsorption of CO to the exposed metal. d Dominant phase examined by XRD.

Mo₂C phase but with greatly increased surface areas. The second effect is of significant importance when the material is used for the catalyst for a structure-sensitive reaction. For example, the *n*-butane hydrogenolysis at 510 K proceeds over Mo₂C with turnover rates more than 10 times higher than those over α -MoC_{1-x}¹⁰

The common feature of the metal-promoted carbide synthesis is the high surface areas of the obtained solid products relative to Mo₂C obtained without a loaded metal. This great increase in surface area might be attributed to the lower temperatures at which the reduction of MoO_3 is initiated. The reduction started at about 650-700 K by showing the evolution of H₂O for MoO₃ loaded with Cu, Co, or Mo₂C. However, the reduction was initiated at about 800 K for MoO₃ itself; thus, the metal loading lowered the reduction temperature by 100-150 K. The crystal growth of Mo₂C particles should be determined by the mobility of metal atoms such as in other metal-sintering processes. At the initial reduction temperature of MoO₃, oxygen atoms start to diffuse out of MoO₃ lattice, which would cause significant movement of molybdenum atoms as well. The extent of the movement should depend on the reduction temperature. Thus, low reduction temperatures limit the mobility and lead to small particles with high surface areas. Still, loading of these metals did not change the obtained molybdenum carbide phase, producing hcp Mo₂C phase with and without the added

The loading of metals such as Ni, Pd, or Pt to MoO₃ reduced the initial reduction temperature further down to 450 K and now the solid-transformation process became topotatic, leading to the formation of the metastable fcc α -MoC_{1-x} phase. This initial reduction temperature is similar to the temperature observed for the MoO_3 reduction with NH_3 . 10,18 It is well-known that transition metals catalyze the reduction of MoO₃ by activating the reducing agent, dihydrogen.²⁷ Apparently, this catalytic effect by Ni, Pd, and Pt is higher than that by Cu, Co, and Mo₂C.

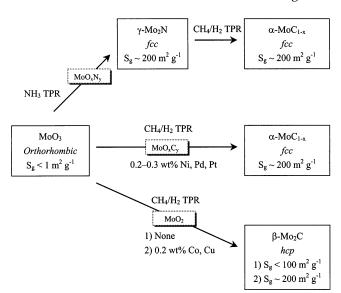
The reduction of MoO₃ by H₂ in the presence of Ni, Pd, and Pt starts from forming a hydrogen bronze, H_{x} MoO₃, even at room temperature. ^{19,28–30} This hydrogen bronze is produced via hydrogen spillover from the transition metal surface to MoO_3 .²⁷ This stage of reaction gives no TPR signal because it does not produce any gaseous molecule. Upon further heating, water is produced and methane is consumed as indicated in TPR spectra of Figure 2d-f. The XRD patterns after this stage of reduction indicate that an oxycarbide intermediate of an fcc structure $(MoO_xC_y)^{31}$ has been formed. At the same stage of reduction of MoO3 without any metal or with Cu, Co, and Mo₂C, MoO₂ and other suboxides are formed as solid intermediates. In this case, there is no indication of carbon incorporation into the molybdenum by methane decomposition. Thus, it appears that the oxycarbide is the intermediate for topotactic MoC_{1-x} formation, whereas MoO_2 is that for nontopotactic Mo₂C formation. This is in line with the formation of oxynitride intermediates in the topotactic reduction/nitridation of MoO3 to Mo2N by NH3.17,18

The key requirement for the topotactic solid transformation is the conservation of a structural motive usually maintained by the relative position of metal atoms.²⁶ When MoO₃ starts to be reduced, the structural motive would be disturbed by departure of oxygen atoms. If the reduction continues, the stable MoO₂ phase

⁽²⁷⁾ Sermon, P. A.; Bond, G. C. Catal. Rev. 1973, 8, 211.

⁽²⁸⁾ Fripiat, J. J. Surface Properties and Catalysis by Non-metals; Bonelle, J. P., Delmon, B., Derouane, E., Eds.; Reidel Publishing: Boston, 1983

⁽²⁹⁾ Vannice, M. A.; Boudart, M.; Fripiat, J. J. J. Catal. 1970, 17,


⁽³⁰⁾ Cirillo, A.; Fripiat, J. J. J. Phys. **1978**, 39, 247

⁽³¹⁾ Bouchy, S. B.; Hamid, D.-A.; Derouane, E. G. Chem. Commun. 2000, 125.

is formed and all the structural motive of MoO₃ is lost. Then, a nontopotactic route would be unavoidable. However, when carbon atoms are available in this early reduction stage, they can take the lattice positions vacated by the leaving oxygen. This carbon incorporation could stabilize the structural motive of MoO₃ and the topotactic transformation is achieved. This simultaneous reduction and carburization at the initial stage of TPR requires the low temperature of the initial reduction and the presence of reactive carbon atoms. These conditions seem to be satisfied by the catalytic effect of the transition metals (Ni, Pd, and Pt) that could activate dihydrogen as well as methane at low temperatures. Other metals (Cu, Co, and Mo₂C) fail to provide the topotactic route because they cannot activate dihydrogen and methane at low enough temperatures where the rate of oxygen removal is not too fast relative to the rate of carbon incorporation. Thus, the difference between Pt, Pd, and Ni, which form the cubic MoC_{1-x} , and Co, Cu, and Mo₂C, which form the hexagonal Mo₂C, is their ability to activate dihydrogen and methane; that is, Co, Cu, and Mo₂C require higher temperatures to become active in dihydrogen and methane dissociation than Pt, Pd, and Ni.

The most significant difference between two types of MoC_{1-x} samples prepared by the direct reduction/carburization (Figure 6) and via Mo_2N (Figure 4) is their morphology. The MoC_{1-x} produced via Mo_2N maintains the platelet morphology of the MoO_3 , demonstrating an almost perfect pseudomorphism. These MoC_{1-x} particles contain a large amount of pore which accounts for the high surface area of 193 m² g⁻¹. Therefore, they must be highly fragile. The morphology of MoC_{1-x} prepared by the metal-promoted direct reduction/carburization seems to be the broken particles and debris from the original large platelets. The direct route seems to be more severe than the nitride route, giving a more serious lattice mismatch and structural stress that would eventually lead to the breakage of the platelets.

Figure 8 summarizes the representative routes for the transformation of MoO₃ to corresponding carbides by the TPR method.²¹ Controlling parameters to affect the TPR routes have been known to be the ramping rate of temperature, flow rate, and composition of reactive gases and the final temperature of the TPR.20 In addition, we can add effects of the transition metal loading on the direct carburization of MoO₃, showing different effects according to the nature of the metals. The direct routes leading to β -Mo₂C are nontopotactic and involve MoO2 as the main intermediate. Metals such as Cu, Co, and Mo₂C do not produce a new phase, but give surface areas of produced Mo₂C as high as those for α -MoC_{1-x}. The two-step process of MoO₃ $\rightarrow \gamma$ -Mo₂N $\rightarrow \alpha$ -MoC_{1-x} is a well-known topotactic route giving fcc molybdenum nitride and carbide with high surface

Figure 8. Schematic procedures of the topotactic and non-topotactic transformations of MoO_3 for the synthesis of unsupported molybdenum carbide.

areas. This process involves molybdenum oxynitrides as intermediates. 17 The direct carburization of MoO_3 loaded with Ni, Pd, or Pt leads to a topotactic transformation to fcc $\alpha\textsc{-}MoC_{1-x}$ with high surface areas. The route involves a molybdenum oxycarbide intermediate.

Summary

This work investigated the effects of transition metal loading such as Co, Cu, Ni, Pd, and Pt on the solid-state transformation of MoO₃ under TPR with a CH₄/4H₂ stream. All metals lowered the initial reduction temperatures of MoO₃ by at least 100 K and led to the great increase in specific surface areas (up to 221 m² g⁻¹) and the amount of CO chemisorption of obtained molybdenum carbides. The addition of Ni, Pd, and Pt resulted in a topotactic route to thermodynamically metastable fcc α -MoC_{1-x} through a molybdenum oxycarbide intermediate. The process is, in general, similar to the wellestablished topotactic transformations of $MoO_3 \rightarrow Mo_2N$ $\rightarrow \alpha$ -MoC_{1-x}, but pseudomorphism was only partly maintained. By contrast, the loading of Cu, Co, and presynthesized Mo₂C resulted in the stable hcp β-Mo₂C phase through MoO₂ intermediate-like preparation without metal loading. But the metal loading gave Mo₂C with the greatly increased surface areas.

Acknowledgment. This work has been supported by the Brain Korea-21 program of the Korea Ministry of Education, and the Research Center for Energy Conversion and Storage and the National Nanotechnology program of the Korea Ministry of Science and Technology.

CM030395W